Endothelialization of TiO2 Nanorods Coated with Ultrathin Amorphous Carbon Films

نویسندگان

  • Hongpeng Chen
  • Nan Tang
  • Min Chen
  • Dihu Chen
چکیده

Carbon plasma nanocoatings with controlled fraction of sp(3)-C bonding were deposited on TiO2 nanorod arrays (TNAs) by DC magnetic-filtered cathodic vacuum arc deposition (FCVAD). The cytocompatibility of TNA/carbon nanocomposites was systematically investigated. Human umbilical vein endothelial cells (HUVECs) were cultured on the nanocomposites for 4, 24, and 72 h in vitro. It was found that plasma-treated TNAs exhibited excellent cell viability as compared to the untreated. Importantly, our results show that cellular responses positively correlate with the sp(3)-C content. The cells cultured on high sp(3)-C-contented substrates exhibit better attachment, shape configuration, and proliferation. These findings indicate that the nanocomposites with high sp(3)-C content possessed superior cytocompatibility. Notably, the nanocomposites drastically reduced platelet adhesion and activation in our previous studies. Taken together, these findings suggest the TNA/carbon scaffold may serve as a guide for the design of multi-functionality devices that promotes endothelialization and improves hemocompatibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphology and crystallinity control of ultrathin TiO2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition.

Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surfac...

متن کامل

Low-temperature synthesis of high-ordered anatase TiO2 nanotube array films coated with exposed {001} nanofacets

High-ordered anatase TiO2 nanotube array films coated with exposed high-reactive {001} nanofacets were fabricated by a modified hydrothermal method using amorphous anodic TiO2 nanotube arrays (ATONAs) as starting materials. It was found that the reaction between gas phase HF and solid ATONAs played a key role in the transformation process from amorphous to anatase TiO2, and the TiO2 tubular str...

متن کامل

Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates

TiO2-coated Ag nanorods (Ag@TiO2 NRs) have been fabricated as multifunctional surface-enhanced Raman scattering (SERS) substrates. Uniform TiO2 shells could sufficiently protect the internal Ag NRs against oxidation and sulfuration, thus the temporal stability of SERS substrates was markedly improved. Meanwhile, due to the synergetic effect between crystalline TiO2 and Ag, the nanocomposites co...

متن کامل

Graphene ultrathin film electrode for detection of lead ions in acetate buffer solution.

Few-layer graphene ultrathin films were synthesized via solid-state carbon diffusion from amorphous carbon (a-C) thin layers sputtering coated on Si substrates with or without a SiO(2) layer, which an a-C layer was covered by a nickel (Ni) layer as a catalyst. When the Ni/a-C bilayer coated samples were heated at 1000°C the carbon (C) atoms from the a-C layers diffused into the top Ni layers to...

متن کامل

Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS

We have demonstrated the plasmonic characteristics of an ultrathin tetrahedral amorphous carbon (ta-C) film coated with Ag nanoparticles. The simulation result shows that, under resonant and non-resonant excitations, the strongest plasmonic electric field of 1 nm ta-C coated Ag nanoparticle is not trapped within the ta-C layer but is released to its outside surface, while leaving the weaker ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016